题目描述:
Given two integers L
and R
, find the count of numbers in the range [L, R]
(inclusive) having a prime number of set bits in their binary representation.
(Recall that the number of set bits an integer has is the number of 1
s present when written in binary. For example, 21
written in binary is 10101
which has 3 set bits. Also, 1 is not a prime.)
Example 1:
Input: L = 6, R = 10Output: 4Explanation:6 -> 110 (2 set bits, 2 is prime)7 -> 111 (3 set bits, 3 is prime)9 -> 1001 (2 set bits , 2 is prime)10->1010 (2 set bits , 2 is prime)
Example 2:
Input: L = 10, R = 15Output: 5Explanation:10 -> 1010 (2 set bits, 2 is prime)11 -> 1011 (3 set bits, 3 is prime)12 -> 1100 (2 set bits, 2 is prime)13 -> 1101 (3 set bits, 3 is prime)14 -> 1110 (3 set bits, 3 is prime)15 -> 1111 (4 set bits, 4 is not prime)
Note:
L, R
will be integersL <= R
in the range[1, 10^6]
.R - L
will be at most 10000.
要完成的函数:
int countPrimeSetBits(int L, int R)
说明:
1、这道题给了两个界限,一个左界限,一个右界限,要求在左右界限的闭区间之内,对每一个数进行判断,最终返回符合条件的数值的个数。
判断的方法是,将每一个数转化为二进制表示,数一下有多少个1,然后看一下1的个数是不一个素数,比如10的二进制是1010,有2个1,2是一个素数,满足条件。
2、明白了规则之后,代码就很容易写了,我们迭代处理,对每个数都进行判断,逐位地右移取出,数一下有多少个1,然后再对个数进行判断就好了。
由于题目限制左界限和右界限在[1,10^6]之内,所以每个数都可以用有符号型整数来表示,也就是说二进制中1的个数最多不会超过32,所以我们可以直接定义一个长度32的vector,里面存储1-32每个数的素数判断情况,这样子处理会快很多。
代码如下:
int countPrimeSetBits(int L, int R) { int i=L,j,count,total=0; vector primevec={0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0}; while(i<=R) { count=0; j=i; while(j) { count+=(j&1);//取出最后一位,加到count里面去 j>>=1;//j不断右移 } if(primevec[count-1]) total++; i++; } return total; }
上述代码十分简洁,实测15ms,beats 83.46% of cpp submissions。